BACKGROUND

de santé McGill

Centre universitaire McGill University

Health Centre

INTRACORTICAL INHIBITION ALTERATION DURING THE REMISSION PHASE OF MULTIPLE SCLEROSIS: **RELATION TO WHITE AND GREY MATTER DAMAGE** Nantes JC*, Zhong J, Whatley B, & Koski L Neurology and Neurosurgery, McGill University McGill University Health Centre

RESULTS

FIGURE 1. Examples of cSP traces are shown from a control (A) and from a RRMS patient participating during a period of clinical remission (B). Compared to controls, RRMS participants had significantly longer cSP durations (C). From the sICI protocol, an example of a motor-evoked potential (MEP) induced by a single supra-threshold TMS-pulse (D) and an inhibited MEP (due to a sub-threshold TMS pulse preceding the upra-threshold TMS pulse) (E) are shown. Groups did not diffe in sla (F).

FIGURE 2. Compared to controls, RRMS participants had lower volumes of white matter (t(27) = -2.75, p < .01) and grey matter (t(27) = -2.07, p < .05) (A). Compared to white matter MTR of controls, RRMS participants had significantly lower MTR within both lesioned (t(24) = -5.48, p < .0001) and normal appearing white matter (t(24) = -1.96, p > .05). Cortical MTR within the primary motor cortex (M1) hand area was lower among RRMS participants compared to controls (t(24) = -1.99, p < .05), although total brain grey matter MTR did not differ (t(24) = 0.87, p > .05) **(B)**.

FIGURE 3. Lower white matter volume predicted longer cSP duration (A). The relationship between grey matter volume and cSP duration did not reach significance (B). Z-scores compare individual RRMS participants to the mean ± SD of the control group.

INTRACORTICAL INHIBITION OUTCOMES **C** 120 t(27) = 2.35 p < .05 σ RRMS t(27) = 0.15 p > .05

			CLINICAL OUTCOME				
		MSFC	9HPT (dominant)	9HPT (non-dominant)	T25FW	PASAT	T N
	Controls	0.62 (0.27)	18.2 (1.9)	17.85 (1.6)	3.6 (0.6)	46.9 (8.9)	1)
	RRMS	0.27 (0.53)*	21.1 (3.8)**	20.5 (3.8)*	4.4 (1.1)*	42.8 (11.2)	S

- Low white matter volume is related to cSP prolongation during RRMS clinical remission phases.
- Preliminary evidence that damage within the primary motor cortex hand region lowers intracortical inhibition.

REFERENCES							
1. Caramia MD, Palmieri MG, Desiato MT, Boffa L, Galizia P, Rossini PM, Centonze D, with transcranial magnetic stimulation. <i>Clinical neurophysiology : official journal c</i>	Ber of th						
2. Fisher E, Lee JC, Nakamura K, Rudick RA: Gray matter atrophy in multiple sclerosis	;: a						
3. Vucic S, Burke T, Lenton K, Ramanathan S, Gomes L, Yannikas C, Kiernan MC: Corti	cal o						
England) 2012, 18(4):425-432. MTR damage paper							
4. Ziemann O. Pharmaco-transcranial magnetic stimulation studies of motor e	XCIT						
ACKNOWLEDGEMENTS							
Thank you to members of the McConnell Brain Imaging Center (BIC) of the Montreal Neurological Institute, for training and assistance with the neuroimaging components of this project.							

Multiple Sclerosis Functional Composite MSFC) and raw scores on each MSFC subscale. * *p* < .01 ***p* < .05

DISCUSSION

cSP DURATION IS RELATED TO BRAIN DAMAGE

RRMS participants (in clinical remission) have cSP prolongation, indicating that activity at intracortical $GABA_{R}$ receptors may be abnormally high.

Time

nardi G: Brain excitability changes in the relapsing and remitting phases of multiple sclerosis: a study International Federation of Clinical Neurophysiology 2004, 115(4):956-965 ngitudinal study. Annals of neurology 2008, **64**(3):255-265 unction underlies disability in multiple sclerosis. Multiple sclerosis (Houndmills, Basingstoke,

ability. Handbook of clinical neurology. 2013;116C:387-97. CONTACT INFORMATION

Email: julia.nantes@mail.mcgill.ca Lab phone: 514-934-1934 ext. 34439 Website: http://koskilab.mcgill.ca

ResearchGate profile name: JULIA CHRISTINE NANTES